

Théorie Financière

6. Relation risque – rentabilité attendue (1/2)

Objectifs de la session

- 1. Revoir le problème du coût d'opportunité du capital
- 2. Analyser les statistiques des returns
- 3. Introduire la variance ou l'écart-type comme mesure du risque d'un portefeuille
- 4. Voir comment déterminer le taux d'actualisation pour un projet au risque égal à celui du marché
- 5. Donner un premier aperçu des implications de la diversification

Déterminer le taux d'actualisation pour un projet risqué

- Les actionnaires ont un choix:
 - Soit ils investissent dans les projets réels des sociétés
 - Soit ils investissent dans des titres échangés sur les marchés des capitaux
- Le *coût du capital* est le coût d'opportunité d'investir dans des actifs réels
- Il se définit comme la rentabilité attendue sur les marchés des capitaux qu'on aurait pu espérer pour un investissement dans un actif réel *de même risque*

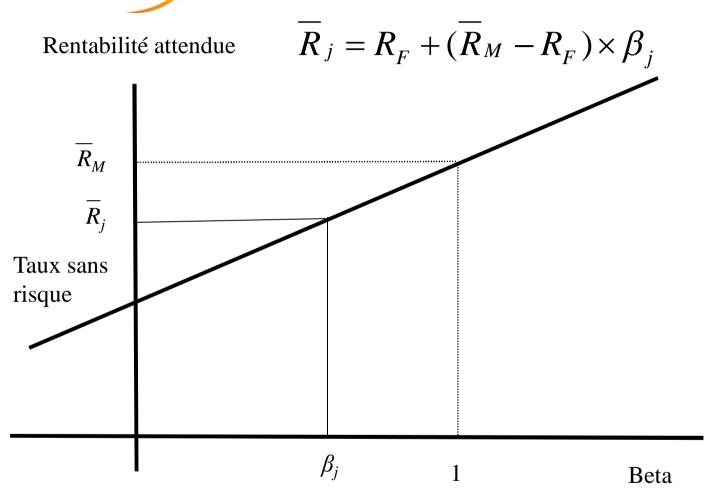
Trois idées clefs

- 1. Les returns sont des variables aléatoires distribuées selon une loi normale
 - Markowitz 1952: théorie du portefeuille, diversification
- 2. Les prix des actions ne sont pas prévisibles (Hypothèse de l'efficience des marchés)
 - Kendall 1953: Mouvements du prix des actions est aléatoire
- 3. Capital Asset Pricing Model (Modèle d'Evaluation Des Actifs Financiers)
 - Sharpe 1964, Lintner 1965
 - Les rentabilités espérées sont fonction du risque systématique (risque de marché)

Avant-goût de la suite

- En premier lieu, nous analyserons les rentabilités passée pour obtenir une estimation de la prime de *risque historique du marché* (la rentabilité excédentaire obtenue en investissant dans des actifs risqués par opposition à l'actif sans risque)
- Puis nous verrons les implications de la diversification.
- Nous montrerons que:
 - La diversification permet à l'investisseur d'éliminer une partie du risque d'un titre s'il était détenu seul (le risque non systématique (*unsystematic*)— encore nommé le risque idiosyncratique).
 - Seul le risque restant (le risque systématique) doit être rétribué par une rentabilité attendue supérieure
 - Le risque systématique d'une action est mesuré par son *beta* (β), une mesure de la sensibilité du return d'une action par rapport au return non anticipé du portefeuille de marché
 - La rentabilité attendue d'un titre doit être positivement corrélée au beta du titre

Capital Asset Pricing Model



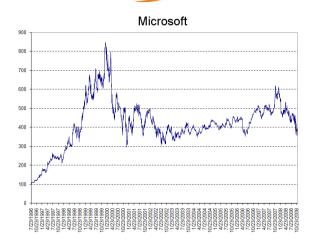
Returns

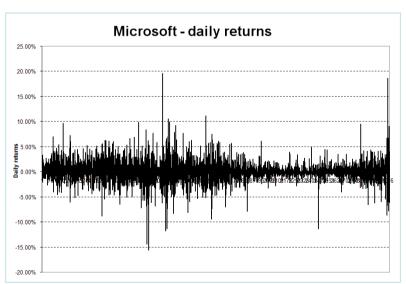
• Les éléments de base que nous utiliserons sont les rentabilités (returns) exprimés en pourcent sur une période donnée:

$$R_{t} = \frac{div_{t}}{P_{t-1}} + \frac{P_{t} - P_{t-1}}{P_{t-1}}$$

- Le taux de rentabilité est un taux par dollar (ou EUR, ou £, ...) investi dans un titre. Il provient:
 - de la rémunération du titre (dividend yield)
 - du gain en capital
- La période pourrait être de n'importe quelle longueur: un jour, un mois, un trimestre, un an.

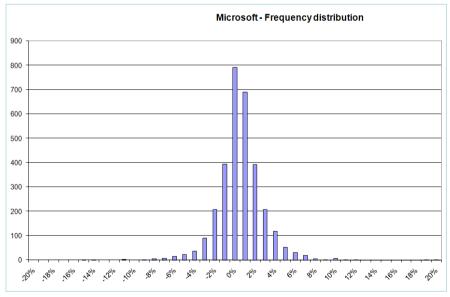
Exemple: Microsoft 1996-2008





Data downloaded form www.finance.yahoo.con

	MSFT		S&P500
From:	23-Jul-96	From:	23-Jul-96
To:	7-Nov-08	To:	7-Nov-08
# obs	3,096		3,096
Mean	0.07%	Mean	0.02%
StDev	2.23%	StDev	1.25%
Max	19.60%	Max	11.58%
Min	-15.61%	Min	-9.03%
Skewness	0.28		0.04
Kurtosis	6.99		8.40



Returns totaux USA 1926-2002

	Moyenne Arithmétique (%)	Ecart-Type (%)	Prime de risque (%)
Actions ordinaires	12.2	20.5	8.4
Actions de petites sociétés	16.9	33.2	13.1
Obligations Corporate LT	6.2	8.7	2.4
Obligations Souveraines LT	5.8	9.4	2.0
Obligations Souveraines MT (1926-1999)	5.4	5.8	1.6
U.S. T-Bills	3.8	3.2	
Inflation	3.1	4.4	

Source: Ross, Westerfield, Jaffee (2005) Table 9.2

Prime de risque pour actifs risqués

- La prime de risque est la rentabilité excédentaire gagnée en investissant dans un actif risqué par opposition à un actif sans risque
- Les U.S.Treasury bills, des obligations CT, souvent considérées comme sans risque seront utilisées comme une approximation de l'actif sans-risque.
- La prime *ex post* (après les faits) encore appelée prime réalisée est calculée en soustrayant la rentabilité moyenne de l'actif sans risque de la rentabilité moyenne pour un actif de risque moyen.
- Rentabilité de l'actif sans-risque = rentabilité sur les T-Bills à un an
- Prime de risque = rentabilité excédentaire moyenne pour un actif risqué

Prime de risque du marché: Le très LT

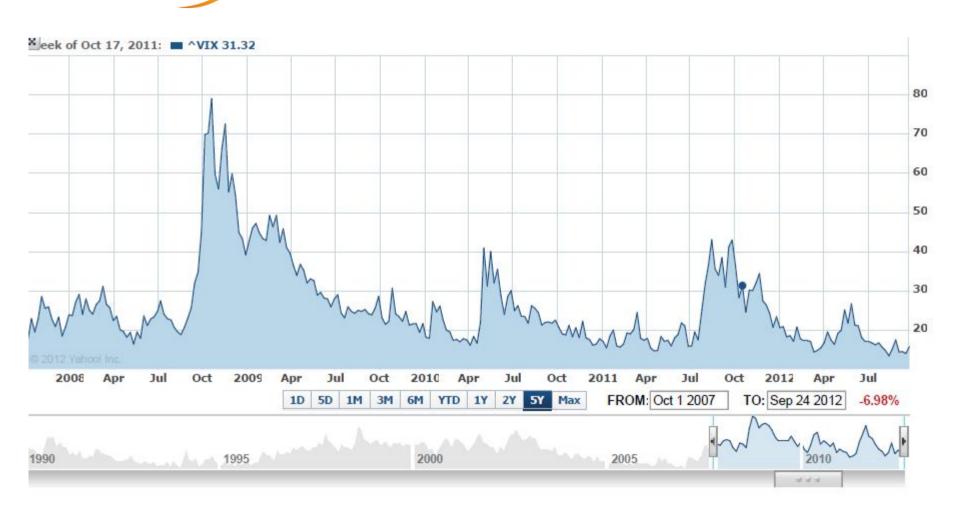
L'equity premium puzzle:

	1802-1870	1871-1925	1926-1999	1802-2002
Actions ordinaires	6.8	8.5	12.2	9.7
Treasury Bills	5.4	4.1	3.8	4.3
Prime de risque	1.4	4.4	8.4	5.4

Source: Ross, Westerfield, Jaffee (2005) Table 9A.1

Le 20^{ème} siècle constitue-t-il une anomalie?

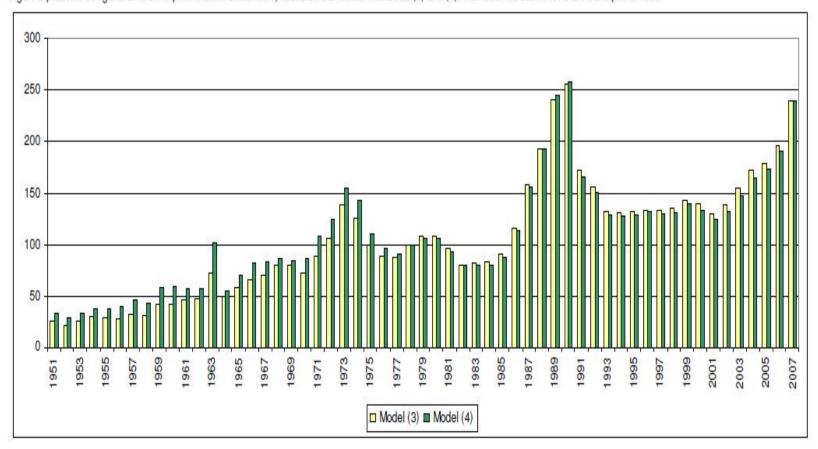
Volatilité: évolution récente



Mais aussi par exemple marché de l'art

Figure 2: Hedonic price index 1951-2007 for benchmark models

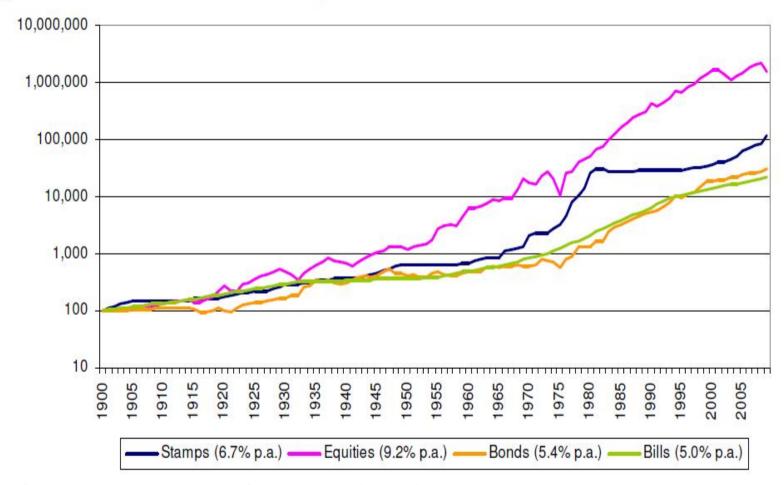
Figure 2 presents our general hedonic price indices since 1951, based on the results of models (3) and (4). The index values in 1978 are set equal to 100.



Source: Renneboog and Spaenjers (2012)

Ou les timbres...

Figure 2: Cumulative returns on stamps and financial assets in nominal terms 1900-2008

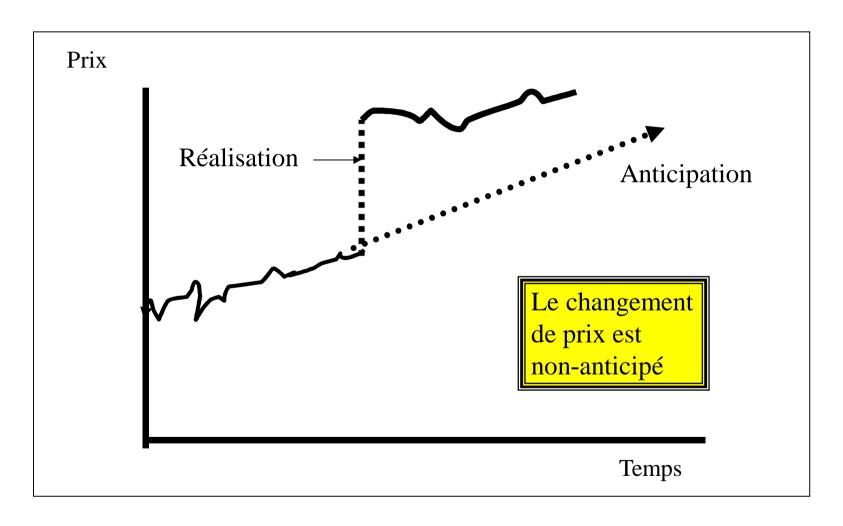


Source: Dimson and Spaenjers (2011)

Notions d'Efficience des Marchés

- Un marché est efficient si:
 - Il n'existe pas d'opportunités d'arbitrage : il n'existe pas de repas gratuit
 - L'achat ou la vente de titres au cours du jour n'est jamais une transaction amenant une VAN positive
 - Les cours révèlent de l'information
- Trois formes d'efficience des marchés (NB: efficience informationnelle)
 - (a) Forme Faible d'Efficience
 - Les Prix reflètent toute l'information passée du cours des actions
 - (b) Forme Semi-forte d'Efficience
 - Les Prix reflètent toute l'information publique disponible
 - (c) Forme Forte d'Efficience
 - Les Prix reflètent toute l'information (publique et privée)

Efficience des marchés: l'intuition



Forme Faible d'Efficience

• Modèle de la marche aléatoire:

- $-P_{t}-P_{t-1}=P_{t-1}*$ (Rentabilité attendue) + erreur aléatoire
- Valeur anticipée du terme d'erreur = 0
- L'erreur aléatoire de la période t n'est pas liée à la composante aléatoire des périodes antérieures

• Implication:

- Valeur anticipée $(P_t) = P_{t-1} * (1 + \text{Rentabilité attendue})$
- Analyse technique: inutile

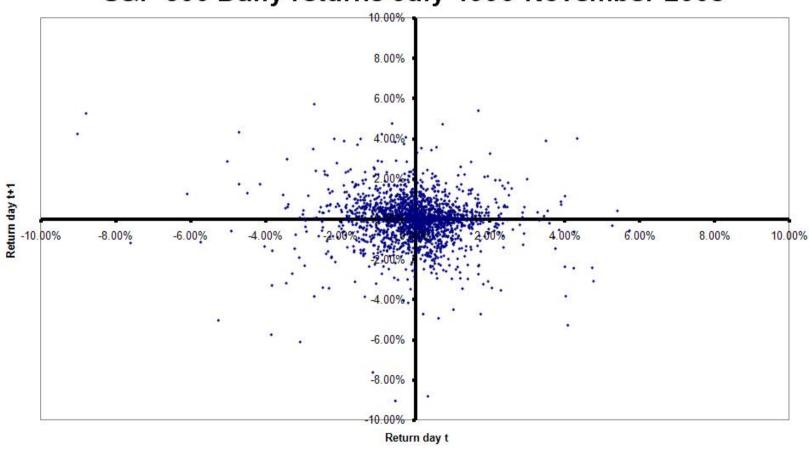
• Empiriquement: existence d'auto-corrélation

- Coefficient de Corrélation entre les returns actuels et passés
- Auto-corrélation = Cor (R_p, R_{t-s})

Modèle de marche aléatoire des cours des actions

 $Correlation(R_t, R_{t+1}) = -0.028$

S&P 500 Daily returns July 1996-November 2008



Forme Semi-forte d'Efficience

- Les Prix reflètent toute l'information publique disponible
- Empiriquement: Etudes d'événements (MacKinlay, 1997)
 - Tester si la publication d'informations influence les returns et si oui quand cette influence se matérialise
 - Return anormal AR : ARt = Rt Rmt
 - Return anormal cumulé:

$$CAR_{t} = AR_{t0} + AR_{t0+1} + AR_{t0+2} + ... + AR_{t0+1}$$

CAR for earning announcements

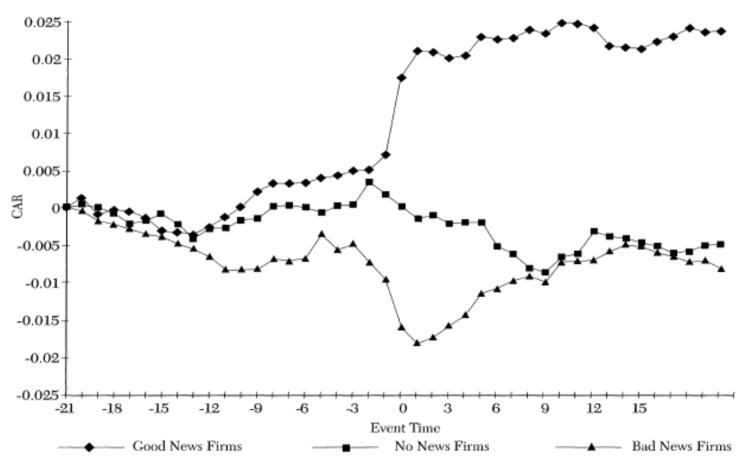


Figure 2b. Plot of cumulative abnormal return for earning announcements from event day -20 to event day 20. The abnormal return is calculated using the constant mean return model as the normal return

Forme Forte d'Efficience

- Comment les gestionnaires (professionnels) de portefeuilles performent-ils?
- Jensen (1968): Les Mutual funds ne génèrent pas de returns anormaux
- $R_{fund} R_f = \alpha + \beta (R_M R_f)$
- Insider trading: Les insiders semblent en revanche générer des returns anormaux

US Equity Mutual Funds 1982-1991 (Malkiel, 1995)

	Return Annuel Moyen
 Capital appreciation funds 	16.32%
 Growth funds 	15.81%
 Small company growth funds 	13.46%
 Growth and income funds 	15.97%
 Equity income funds 	15.66%
• S&P 500 Index	17.52%
• Déviation moyenne par rapport	-3.20%
au benchmark (ajusté pour le risque)	

US Equity Mutual Funds 1982-1991 (Malkiel, 1995)

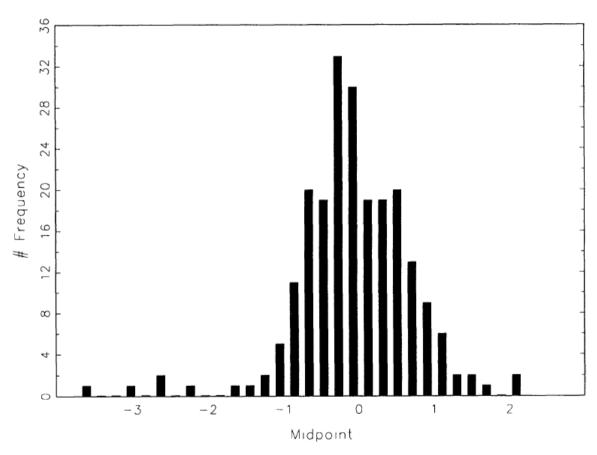
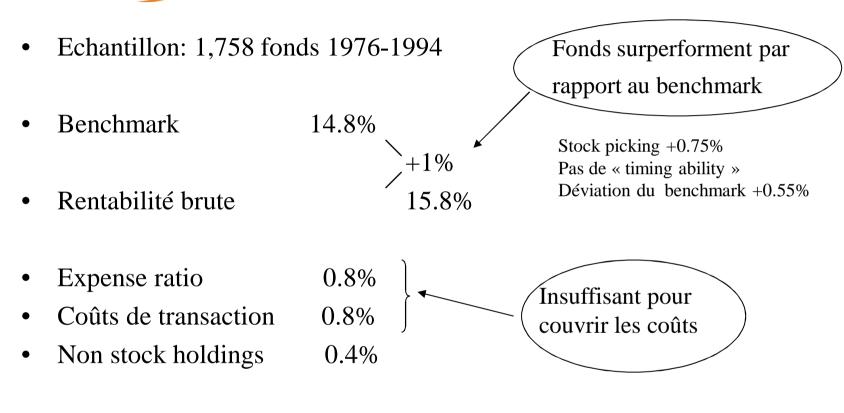


Figure 1. Estimates of Individual Mutual-Fund Alphas 1972 to 1991. The frequency distribution of estimated alphas for all equity mutual funds with 10-year continuous records.

Rentabilité nette

Décomposition des returns des Mutual Fund (Wermers, 2000)



13.8%

A quoi les marchés réagissent-ils?

- Qui le sait vraiment?
- Enormément de bruit:
 - -1985-1990: 120 jours avec $|\Delta DJ| > 5\%$
 - 28 cas (1/4) attribuables à un événement spécifique (Siegel *Stocks for the Long Run* Irwin 1994 p 184)
 - Futures sur jus d'orange (Roll 1984)
 - 90% de la variabilité d'un jour à l'autre ne peut pas être expliquée par les fondamentaux
- Journalistes financiers?

Trading Is Hazardous to Your Wealth (Barber and Odean, 2000)

- Echantillon: activités de trading de 78,000 ménages 1991-1997
- Conclusions principales:
 - 1. Ménage moyen sous-performe par rapport au benchmark de 1.1% par an
 - 2. Le fait d'effectuer beaucoup d'achats/ventes diminue le return net moyen

Traders peu actifs: 18.5% Traders fréquents: 11.4%

- 3. Les ménages effectuent beaucoup de transactions (75% de turnover annuel)
- 4Coûts de transaction sont élevés: pour un aller-retour moyen 4% (Commissions 3%, bid-ask spread 1%)

Choix de Portefeuille

Risque et rentabilité attendue pour des portefeuilles

- Considérons un portefeuille constitué de deux actifs (A,B)
- Caractéristiques:

- Rentabilité attendue: $\overline{R}_A, \overline{R}_B$

- Ecart-type: σ_A, σ_B

- Covariance : $\sigma_{AB} = \rho_{AB} \sigma_A \sigma_B$

- Portefeuille: défini par les fractions investies dans chacun des actifs X_A , X_B $X_A + X_B = 1$
- Rentabilité attendue du portefeuille:

$$\overline{R}_P = X_A \overline{R}_A + X_B \overline{R}_B$$

• Variance de la rentabilité du portefeuille:

$$\sigma_P^2 = X_A^2 \sigma_A^2 + 2X_A X_B \sigma_{AB} + X_B^2 \sigma_B^2$$

Exemple

• Investissons \$ 100 m dans deux actifs:

• A \$ 60 m
$$X_A = 0.6$$

• B \$
$$40 \text{ m}$$
 $X_B = 0.4$

• Caractéristiques (% par année) A B

• Corrélation 0.5

• Rentabilité attendue =
$$0.6 \times 20\% + 0.4 \times 15\% = 18\%$$

• Variance =
$$(0.6)^2(.30)^2 + (0.4)^2(.20)^2 + 2(0.6)(0.4)(0.30)(0.20)(0.5)$$

$$\sigma_p^2 = 0.0532 \Rightarrow \textbf{Ecart-type} = \textbf{23.07 \%}$$

• Inférieur à la moyenne des écarts-types des titres pris individuellement:

•
$$0.6 \times 0.30 + 0.4 \times 0.20 = 26\%$$

Effet de Diversification

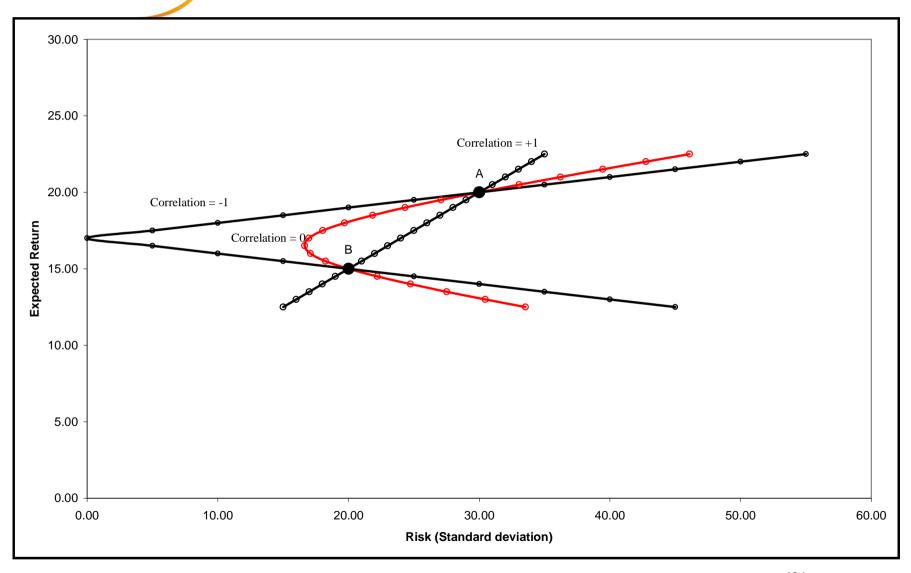
Varions le coefficient de corrélation

Coefficient de corrélation	Rentabilité attendue	Ecart-type
-1	18	10.00
-0.5	18	15.62
0	18	19.7
0.5	18	23.07
1	18	26.00

• Conclusion:

 Tant que le coefficient de corrélation est inférieur à un, l'écart-type d'un portefeuille composé de deux titres risqués est inférieur à la moyenne des écarts-types des titres pris individuellement

Portefeuilles efficients pour deux actifs



Combiner l'actif sans risque et un actif risqué

- Considérons le portefeuille P:
- Fraction investie
 - Dans l'actif sans risque 1-x (40%)
 - Dans l'actif risqué x (60%)

	Actif sans risque	Actif risqué
Rentabilité attendue	6%	12%
Ecart-type	0%	20%

• Rentabilité attendue du portefeuille P : $\overline{R}_P = (1-x)R_F + x\overline{R}_S$

$$\overline{R}_P = 0.40 \times 0.06 + 0.60 \times 0.12 = 9.60\%$$

• Ecart-type du portefeuille P :

$$\sigma_P = x\sigma_S$$

$$\sigma_P = 0.60 \times 0.20 = 12\%$$

Relation entre risque et rentabilité attendue

• Combinons les expressions obtenues pour:

$$\overline{R}_P = (1 - x)R_F + x\overline{R}_S$$

$$\sigma_P = x\sigma_S$$

amène

$$\overline{R}_{P} = R_{F} + \frac{\overline{R}_{S} - R_{F}}{\sigma_{S}} \sigma_{P} \qquad \overline{R}_{P} = 0.06 + \frac{0.12 - 0.06}{0.20} \sigma_{P} = 0.06 + 0.30 \sigma_{P}$$

$$\overline{R}_{P}$$

$$\overline{R}_{S}$$

$$R_{F}$$

Choisir entre 2 actifs risqués: le ratio de Sharpe

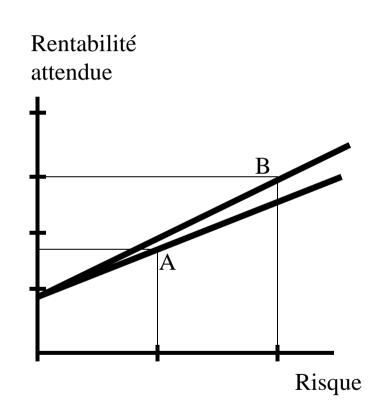
• Choisir l'actif avec le plus grand ratio de rentabilité excédentaire attendue par unité de risque:

Sharpe ratio =
$$\frac{\overline{R}_i - R_F}{\sigma_i}$$

• Exemple: $R_F = 6\%$

	Renta attendue	Risque
A	9%	10%
В	15%	20%

- Sharpe ratio pour chaque actif
 - A (9-6)/10 = 0.30
 - B (15-6)/20 = 0.45 **

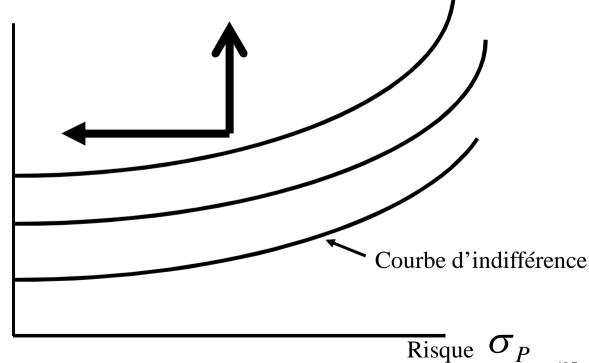


Aversion au risque

- Aversion au risque:
 - Pour un niveau de risque donné, l'investisseur préfère une rentabilité attendue plus élevée

 Pour un niveau de rentabilité attendue, l'investisseur préfère moins de risque

Rentabilité attendue



Fonction d'utilité

• Une représentation mathématique des préférences

$$U(\overline{R}_P, \sigma_P) = \overline{R}_P - a\sigma_P^2$$

- a: coefficient d'aversion au risque
- Exemple: a = 2

$$\overline{R}_P$$
 σ_P Utilité
A 6% 0 0.06
B 10% 10% 0.08 = 0.10 - 2×(0.10)²
C 15% 20% 0.07 = 0.15 - 2×(0.20)²

B est préféré

Choix optimal avec un seul actif risqué

• Actif sans risque: R_F Proportion = 1-x

• Portefeuille risqué S: \overline{R}_S , σ_S Proportion = x

• Utilité: $u = \overline{R}_P - a\sigma_P^2 = [(1-x)R_F + x\overline{R}_S] - ax^2\sigma_S^2$

• Optimum: $\frac{du}{dx} = (\overline{R}_S - R_F) - 2ax\sigma_S^2 = 0$

• Solution: $\left| x = \frac{1}{2a} \times \frac{\overline{R}_S - R_F}{\sigma_S^2} \right|$

• Exemple: a = 2 $x = \frac{1}{2a} \times \frac{\overline{R}_S - R_F}{\sigma_S^2} = \frac{1}{2 \times 2} \times \frac{0.12 - 0.06}{(0.20)^2} = 0.375$

Portefeuilles efficients pour deux actifs

